Reconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli
نویسندگان
چکیده
Protein translation is essential for all bacteria pathogens. It has also been a major focus of structural and functional studies and an important target of antibiotics. Here we report our attempts to biochemically reconstitute mycobacterial protein translation in vitro from purified components. This mycobacterial translation system consists of individually purified recombinant translation factors from Mycobacterium tuberculosis (M. tuberculosis), purified tRNAs and ribosomes from Mycobacterium smegmatis (M. smegmatis), and an aminoacyl-tRNA synthetase (AARS) mixture from the cell-extract of M. smegmatis. We demonstrate that such mycobacterial translation system was efficient in in vitro protein synthesis, and enabled functional comparisons of translational components between the gram-positive Mycobacterium and the gram-negative E. coli. Although mycobacterial translation factors and ribosomes were highly compatible with their E. coli counterparts, M. smegmatis tRNAs were not properly charged by the E. coli AARSs to allow efficient translation of a reporter. In contrast, both E. coli and M. smegmatis tRNAs exhibited similar activity with the semi-purified M. smegmatis AARSs mixture for in vitro translation. We further demonstrated the use of both mycobacterial and E. coli translation systems as comparative in vitro assays for small-molecule antibiotics that target protein translation. While mycobacterial and E. coli translation were both inhibited at the same IC50 by the antibiotic spectinomycin, mycobacterial translation was preferentially inhibited by the antibiotic tetracycline, suggesting that there may be structural differences at the antibiotic binding sites between the ribosomes of Mycobacterium and E. coli. Our results illustrate an alternative approach for antibiotic discovery and functional studies of protein translation in mycobacteria and possibly other bacterial pathogens.
منابع مشابه
Determination of the optimal conditions of cloning Aerolysin gene from the common carp pathogen Aeromonas hydrophila in Escherichia coli BL21
Aeromonas hydrophila is a gram-negative bacterium which associated with gastrointestinal diseases and septicaemia. This pathogenic bacterium has several virulence factors ranging from pili to the excreted protein which called (Aerolysin) with minor and major effects, respectively. Additionally, Aeromonas hydrophila is a widely distributed bacterium that commonly causes ulcers in cyprinid fish s...
متن کاملCloning and sequencing of ompf Salmonella typhi Salmonella ompf gene in Escherichia coli Origami
Background and Aim: Salmonella Typhi belongs to the family Enterobacteriaceae, gram-negative bacilli and causes gastrointestinal diseases such as typhoid. This bacterium has a special structure and various genes, including the ompf gene (outer membrane protein). Recent studies have shown the possibility of using ompf in the development of a diagnostic tuberculosis vaccine. Therefore, the aim of...
متن کاملAntibacterial effects of crude venom and their protein fractions of Hottentotta saulcyi scorpion
Introduction: Infectious diseases, mainly caused by bacterial agents, are one of the most common causes of death worldwide. A significant number of these agents have been resistant to one or more antibiotics; some of them are multi-drug resistant and others are extensively drug resistant. Various antimicrobial and anticancer compounds have been reported from the venom of various species of scor...
متن کاملGram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis.
Mycobacterium tuberculosis, a Gram-positive bacterium, encodes a secreted Dsb-like protein annotated as Mtb DsbE (Rv2878c, also known as MPT53). Because Dsb proteins in Escherichia coli and other bacteria seem to catalyze proper folding during protein secretion and because folding of secreted proteins is thought to be coupled to disulfide oxidoreduction, the function of Mtb DsbE may be to ensur...
متن کاملReconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components
Thermus thermophilus is a thermophilic model organism distantly related to the mesophilic model organism E. coli. We reconstituted protein translation of Thermus thermophilus in vitro from purified ribosomes, transfer ribonucleic acids (tRNAs) and 33 recombinant proteins. This reconstituted system was fully functional, capable of translating natural messenger RNA (mRNA) into active full-length ...
متن کامل